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Abstract

The monitoring by measurement and analysis of vibration is largely used to detect the defects in revolving machines.

The determination of the best sensor positions is one of the main research goals in the field of predictive maintenance.

This paper proposes a numerical methodology based on a finite element model and a spectral analysis in order to find

optimum sensor positions. The bearing is a key component for the vibration propagation from the moving parts to

static ones. An analytical bearing model and its numerical implementation in a finite element code are presented. The

tangent stiffness matrix of the bearing element is obtained by the Newton–Raphson method and then used for the

modal and spectral analyses. Several techniques are used to find the most sensitive zones to common defects.

The proposed numerical approach correlate well with the experimental results. The numerical modeling of a grinder

shows the interests in industrial applications. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The follow-up of the damage of some parts in a rotating machine by vibration analysis is a widely used
technique in the predictive maintenance. The purpose of this type of maintenance, advantageous to the
curative and periodic maintenance, is to carry out an intervention on a part just before its mechanical
failure (AFNOR, 1995). This requires the monitoring and analysis of the evolution of vibration spectrums
at one or several points on the machine in order to detect the characteristic peaks of common defects (Max,
1987). For the vibration follow-up of the bearings, it is possible to calculate in advance the frequencies of
ring or ball defects according to the bearing geometry and its rotating speed (Morel, 1992). In most cases,
the ideal measurement points are situated near the parts to be followed up, but the size of some machines
and the accessibility to certain areas makes it difficult, even impossible, to take the measurements in these
places.
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Although the reliability of defect detecting in the predictive maintenance has made enormous im-
provements, mainly due to the computer treatment of vibratory signals, it is nevertheless greatly dependant
on the quality of signal analysis and positioning of sensors.

This study proposes a methodology based on a numerical approach in order to find an optimum sensor
implementation on a revolving machine. The numerical modeling allows to determine the number and the
location of measurement points. Particular consideration is given to a common component on revolving
machines: the bearing which is the only material link between the moving part and the immobile part in the
vibration transmission.

Firstly an analytical model for the rolling ball bearing is presented. The relations between the dis-
placements (rotations) and the forces (torques) are obtained by using the cinematic relations and the Hertz
contact theory. The formulation of the bearing element and its implementation in a finite element software
are described. The model and the spectral analyses are used to determine the most sensitive zones for given
defects. This numerical methodology is validated with an experimental academic example. Moreover, the
comparison between the numerical and experimental results of an industrial grinder shows the interest of
this application in the sensor monitoring setting for the predictive maintenance.

2. Bearing modeling and its numerical implementation

The numerical modeling of an elementary cell of a revolving machine (the whole shaft-bearing-housing)
in detail is very tedious and complicated because of the contact treatment. An analytical model is presented
here to obtain an equivalent stiffness of the ball bearing and then its finite element implementation in order
to carry out the vibration analysis.

2.1. Definition of the bearing stiffness matrix

Numerous problems are involved in analytical models of the bearing because of its strongly non-linear
elastic behavior. This non-linearity is due to the Hertzien contact and the clearance between the rolling
elements and the rings. Moreover, the load intensity, supported individually by each ball, depends on the
internal geometry of the bearing as well as the type of the applied load.

Many publications have been presented on the evaluation of the life duration of the ball and roller
bearings in function of the applied excitations (Palmgren, 1959; Jones, 1960; Harris, 1991).

Several researchers have also studied the equivalent stiffness of bearings (Lim and Singh, 1990; Demul
et al., 1989). They proposed an analytical model and a stiffness matrix with 5 degrees of freedom on the
inner ring (3 translations and 2 rotations; the rotation around the shaft is free). The proposed matrix in-
cluded coupling of the bending movements between the shaft and housing and take into account the effects
of the centrifugal forces and the gyroscopic moments.

For the studied case, the effects of the centrifugal forces and gyroscopic moments have only a little
influence on the coupling coefficients because of the low angular speed of the shaft. Our approach is based
on the above works but without considering these effects. The analytical bearing model consists in deter-
mining the relations between the displacements (rotations) and the applied forces (torques) at the center O
of the bearing.

The geometry of a ball bearing with oblique contact are presented in Fig. 1 where ai and ae are the
curvature centers of the inner and outer rings, A0 and Aj are the distances between these two centers before
and after loading, drj and dzj are the effective displacements in the radial and axial directions for the ball
number j, di and bi, are the displacement and rotation at the center O. Fig. 1 also shows the external forces
fF g acting on the gravity center of the radial ball bearing. The components of this force in the global
cartesian system ðX Y ZÞ are:
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fF g ¼ FX FY FZ MX MYh iT ð1Þ
this external force vector depends on the assembly of the shaft-bearing and can be obtained from the static
equilibrium of the system. The external forces fF g must be in balance with the internal forces fQg resulting
from the superposition of the forces of all balls on the inner ring:

fF g þ fQg ¼ f0g ð2Þ
The force Qj applied on the jth ball, can be written as follows according to the Hertz theory:

Qj ¼ Kdm
j with

dj ¼ Aj 	 A0; 8Aj > A0

dj ¼ 0; 8Aj < A0

�
ð3Þ

where K is the stiffness constant which depends on the nature and the geometry of the components in
contact, the exponent m is equal to 1.5 in the case of a ball bearing (Harris, 1991).

A geometric study on the displacement of the pointM and the curvature center of the inner ring, shows
that the distance Aj is relative to several geometric dimensions of the bearing, but also to the displacement
~uuM . The contact force calculated for each ball can be cumulated and then projected in the reference ðr t zÞ in
order to obtain the contact force components:

~uuM ¼ ur~rr þ uz~zz and fQgrtz ¼ Qr Qz Th iT ð4Þ
where Qr and Qz are the components of the contact forces in the r and z directions, T is the torque around
the~tt axis. By choosing the M point at the curvature center, the torque T is always equal to zero. The
resultant forces in the global reference ðX Y ZÞ can be easily obtained with the transformation matrix [R/]:

fQg ¼ R/

� �TfQgrtz with ½R/� ¼
cos/ sin/ 0 	zm sin/ zm cos/
0 0 1 rm sin/ 	rm cos/
0 0 0 	 sin/ cos/

2
4

3
5 ð5Þ

where zm and rm are the components of the curvature centre in the ðr t zÞ reference.
This matrix allows to express the displacement ~uuM of the curvature centre M in the ðr t zÞ reference,

according to the displacements ~dd of the point O in the ðX Y ZÞ reference:

fuMgrtz ¼ R/

� �
fdg with fdg ¼ dX dY dZ bX bYh iT ð6Þ

Fig. 1. Geometry and cinematic relations of a ball bearing with oblique contact.
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where di and bi are the translation and rotation components of the point O expressed in the ðX Y ZÞ ref-
erence.

Eqs. (2) and (5) give the following non linear system:

fRg ¼ fF g þ
Xn

j¼1

R/

� �T
j
fQgj ¼ 0 ð7Þ

where fRg is the residual force vector, n the number of balls. The Newton–Raphson method is used to solve
the above system and obtain the tangent stiffness matrix at the given load level:

KT½ �fDdg ¼ fRg and fdiþ1g ¼ fdig þ fDdg ð8Þ
with

KT½ � ¼ 	 ofRg
o dh i

	 

¼ 	

Xn

j¼1

R/

� �T
j

ofQgj
o uMh i

	 

ofuMg
o dh i

	 

ð9Þ

KT½ � ¼ 	
Xn

j¼1

R/

� �T
j
K 0� �

j
R/

� �
j

ð10Þ

where fDdg is the displacement increment, ½K 0� is the contact stiffness matrix (3� 3) defined in the ðr t zÞ
reference, ½KT � is the tangent stiffness matrix ð5� 5Þ defined in the global ðX Y ZÞ reference.

2.2. Numerical implantation of the bearing element

The calculations were carried out using the ABAQUS� code. The ball bearing model was implemented
in the ABAQUS code by developing a ‘bearing’ element with two nodes and five dof per node using the
above tangent stiffness matrix. The objective is to replace the bearings by some bearing elements. These
links ensure, with the help of the tangent stiffness matrix, the vibration transmission from the shaft to the
housing. The outer ring of the bearing is very rigid and fixed on the housing bore. This ring is connected to
the shaft by using four bearing elements (Fig. 2). The stiffness matrix of each element is a quarter of the
global stiffness matrix defined previously:

KT½ �i ¼ 1
4
KT½ � ð8i ¼ 1; 2; 3; 4Þ ð11Þ

The number of connections have been chosen according to several tests using 3, 4, 6, 12 and 16 bearing
elements. The comparison shows that four connections are adequate for studied vibration system.

Fig. 2. Connection between the shaft and the housing with ‘bearing elements’.
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3. Dynamic analysis to find optimum sensors placements

The determination of the optimum sensor positions needs a dynamic analysis and an exploitation of the
obtained eigenvectors or dynamic response vectors.

3.1. Excitation forces

In a revolving machine, the most sensitive organs are often the bearings. The emergence of different
defects on these bearings involves different dynamic excitations which allows to characterize the types of
defects (Appendix A). The usual defects are of course the chipping defects on the inner ring, outer ring or
on the balls.

An excitation can be decomposed in three components in the ðX Y ZÞ reference according to the contact
angle a and the angular position ud of the defect:

FX ¼ F1 cosðaÞ cosðudÞ
FY ¼ F1 cosðaÞ sinðudÞ
FZ ¼ F1 sinðaÞ

8<
: ð12Þ

For a defect on the fixed outer ring, the direction of the force F1 and the angle ud due to the defect do not
change, but if the defect is situated on the inner ring or on a ball, then ud is time dependent. In this paper,
only the defects on the outer ring giving a constant angle ud are studied.

The excitations generated by defects are periodic signals whose shapes can be assumed as rectangular,
triangular or sinusoidal pulses (Fig. 3). The pulse width DT depends on the defect size and the relative speed
between rolling elements (Tandon and Choudury, 1997). Three pulse width are considered: 10%, 30% and
50% of the period T. With these assumptions, an excitation can be written in Fourier series (Eq. (15)). For
each of these excitation signals, Fourier coefficient F0 and Fk are developed in Appendix B. Here we take 20
terms in the series (Nf ¼ 20). The final response is the sum of the responses excited by every pulsation kxn.

3.2. Dynamic analysis in the frequency domain

A standard dynamic problem can be described by the following system:

M½ �f€qqðtÞg þ C½ �f _qqðtÞg þ K½ �fqðtÞg ¼ fF ðtÞg ð13Þ

Fig. 3. Pulse shapes of defect excitations.
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where [M] is the symmetric mass matrix, [C] the damping matrix, [K] the stiffness matrix, {q} the dis-
placement vector, the excitation vector fF ðtÞg is a periodic function, but is not necessarily an harmonic
function.

The first step consists in solving the eigenvalue problem by a classical vibration analysis. This problem of
free vibration is defined as follows:

M½ �f€qqg þ K½ �fqg ¼ 0 ð14Þ

By setting fqðtÞg ¼ fqgeixt with the amplitude vector fqg independent of the time, the eigenvalue problem is
solved by the method of subspace iteration to obtain the eigenvalue x, the eigenvector {/} and the modal
matrix U½ � ¼ f/1g � � � f/ng � � �½ �.

In the second step, a spectral analysis is carried out in the frequency domain. The excitation vector is
decomposed in Fourier series, taking into account the parity of the excitation signal:

fF ðtÞg ¼ fF0g þ
Xn¼þ1

n¼1

fFng cosðxntÞ ð15Þ

with

fFng ¼ 2

T

Z þT
2

	T
2

fF ðtÞg cosðxntÞdt; xn ¼ nxf ; xf ¼
2p
Tf

ð16Þ

where Tf is the period of a defect excitation.
The study is restricted to permanent response in steady states. Every harmonic excitation in the Fourier

series gives an harmonic response which can be express in the frequency domain using a Fourier transform.
Using the modal superposition method, we obtain the following dynamic response:

fqðxf Þg ¼
XNf

n¼1

Xnb modes

j¼1

f/jgHjf/jg
TfFng ð17Þ

with the frequency response function:

Hjðxf Þ ¼
1

x2
fMj þ ixf Cj þ Kj

ð18Þ

where Mj, Cj, Kj are jth components of the diagonal mass, damping and stiffness matrices. To facilitate the
resolution the modal damping Cj is defined as the function of the damping ratio nj in the mode j char-
acterized by the pulsation xj:

Cj ¼ 2njxj ð19Þ

3.3. Two methods for defect detection

Two methods are presented to determine the optimum sensor positions for the defect detection.

3.3.1. Mode shape summation method
This method is based on the summation of the first p normalized natural modes obtained by the ei-

genvalue computation:

f/MSSMg ¼
Xp

i¼1

f/ig ð20Þ
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The maximal absolute value in the vector {/MSSM} indicates the maximal vibration amplitude and the
corresponding degree of freedom, so the sensor positions can be easily obtained. This method was devel-
oped to determine the measurement locations for an experiment modal test (De Clerck and Avitabile,
1996). It does not consider the contribution percentage of each mode neither the influence of the excitation
defects; the choice of the frequency interval and the number of modes is a difficult task. Its application in
this study is for the tentative identification for the measurement locations of defect detection. However, this
is beyond the intended use of MSSM.

3.3.2. Defect response method
This method is based on the spectral analysis in the frequency domain. The defect excitations are as-

sumed periodic with the periods Tor, Tir, Tball and Tcage relative to the outer ring, inner ring, the balls and to
the cage. The obtained defect response vectors can be used to find the optimum sensor positions. In
practice, the sensors allow to detect only the vibration perpendicular to the installation surface, so these
response vectors should be projected in the normal directions of surfaces; only the absolute values of these
projections are used to determine the sensor positions.

This method is more rigorous than the mode shape summation method (MSSM), but numerous defect
excitations (different directions and frequencies) will give many choices.

One possibility to reduce the number of choices is to sum these response vectors as follows:

fqRESPg ¼
XNb freq defect

d¼1

fqdg ð21Þ

This technique is very simple to implement, but it mixes the contributions of all defects without con-
sidering weighting coefficients which are not easy to choose.

4. Numerical and experimental results on a bearing plate mount

4.1. Description of the experimental device

An experimental device (Fig. 4) is made to produce the dynamic effects on the bearing and housing in a
revolving machine (Bogard, 2000). This device is an elementary cell composed of a shaft (145 mm, £25
mm) in steel alloy XC38. The shaft is fitted on two identical ball bearings SNR 6205, separated by a
distance of 42 mm. The upper bearing is fitted on an aluminum alloy plate 2024 (5:96� 400� 600 mm3),
representing the housing. This plate is fixed on its perimeter by eight massive bars in steel XC38 (46� 46 mm2),

Fig. 4. Experimental mount of the elementary cell.
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which are fixed to a concrete support with 38 bolts in order to obtain embedding boundary conditions.
The lower bearing is directly fitted on a steel plate embedded in the concrete block.

The free extremity of the shaft is subjected to a radial pre-load of 193 N in the Oy direction obtained with
a dead weight. This pre-load eliminates the shocks due to the internal clearance of the bearing. It can be
observed that the rotation speed of the shaft has no influence on the bearing stiffness in the considered
speed range; the difference of the stiffness between the static and the dynamic cases is neglected (Kraus
et al., 1987). A white noise signal is applied on the free extremity of the shaft in the Oy direction by a
shaker. This kind of signal allows to excite the system in a realistic way in order to validate some as-
sumptions in the present numerical model.

4.2. Identification of experimental modes

The experimental measurements frequency response functions (FRF) are exploited by using a modal
analysis software, Matlab Toolbox� (SDT, 1999). The purpose is to identify the excited frequencies and
modal shapes of the system: the measurements, taken on 25 points on the structures, are interpolated by the
software to determine the excited frequencies; a graphic interface allows to show the vibration modes and to
compare them with the numerical modes.

4.3. Numerical modeling and experimental validation

Firstly the dynamic behaviors of the elementary cell are studied without considering the bearing. The
aluminium plate is discretized with the four node plate element and the shaft with the two node 3D beam
element (Timoshenko). The rigorous embedding boundary conditions are very difficult to obtain experi-
mentally, so in the present numerical modeling, pseudo-embedding conditions are determined by a pa-
rameter identification. The FRF measured frequencies and the calculated ones by the FE method in the
range of 0–2 kHz are in a quite good agreement. Some of the peaks are the result of local modes of the
structure that are not of interest or concern for the evaluation under consideration. But, for the first ten
modes, the average error is lower than 7%, so the parameter choices in the modeling of the housing–bearing
unit are considered a reasonable choice.

Then, FRF of the device are computed by using the bearing element and imposing a white noise on the
free extremity of the shaft. The experimental acquisition is achieved with a multi-channel card in the fre-
quency range of 0–2 kHz. The comparison between experimental and numerical results is carried out by
superposing the numerical results and FRF measurements evaluated on a same point and in the normal
direction Z.

The above FRF comparison is not always sufficient to validate the numerical model. A modal analysis,
realized with the Matlab Toolbox software, allows to identify with certitude the frequencies and associated
vibration modes, then to compare them with calculated modes. A fairly good correlation can be observed
between the experimental and numerical modal shapes (Fig. 5), which confirms the present bearing model
and the corresponding finite element.

4.4. Numerical application of the two methods for defect detection

The two methods MSSM and defect response method (DRM) are applied to the elementary cell to study
their influence on the defect detection using an excitation on the outer ring of the ball bearing. The
comparison of the amplitude isovalues obtained by the both methods shows:

• The MSSM gives incoherent results with respect to the symmetric geometry of the elementary cell (Fig.
6a). In fact, the summation of the symmetric and anti-symmetric modes gives a non symmetric distribu-
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Fig. 6. Vibration amplitudes on the elementary cell obtained by different methods.

Fig. 5. Experimental validation of the spectral response.
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tion and the summation of some modes without weighting coefficients has no physical sense. This numer-
ical result confirms the remark in Section 3.3: the use of MSSM is inappropriate for the present study
and well beyond its intended use.

• For the DRM, the results are realistic and we are able to put forward two numerical areas for measure:
(i) when the defect frequency is really weak (10 Hz), the results show that whatever the excitation point,
the ideal measure area is the same and very close to the excitation point (Fig. 6b); (ii) when the defect
frequency is greater than the first natural frequency (95 Hz), the calculation gives two other measure
areas (Fig. 6c). In fact, the low frequency defects mainly excite the first mode of the frame; but the defects
of higher frequencies provoke higher modes.

• The cumulated response (Fig. 6d) shows that the best measure zones fit with areas relative to the greatest
defect frequency. This cumulation leads to a masking of the area corresponding to lower defect frequen-
cies.

5. Defect detecting on a grinder

After the validation of these numerical tools, it seems interesting to study an industrial example. We
create the CAD file of a grinder and import it in a FE code for numerical modeling (Fig. 7). The grinder is
composed of two flasks in the two extremities, a protection steel sheet in the middle, four threaded stems of
assembly, a stator, a rotor and two ball bearing SNR 6203 situated inside the two flasks.

5.1. Numerical determination of the sensor positions

The protection sheet is fixed on the flasks only by four screws and has no structural function. Moreover,
it is experimentally proved that the measurement on this sheet is not reliable. So this sheet is not included in
the numerical modeling (neither in the experiment). The two flasks are meshed with quadrangular and
triangular shell elements, the stator is meshed with eight node hexahedral elements, the stator and stems are
meshed with Timoshenko beam elements. Each ball bearing is modeled by four bearing elements. The
whole system involves 19 190 degrees of freedom.

At first, the results of modal analysis are compared to the experimental ones for a flask with free–free
boundary conditions. The relative errors are generally small, for the natural frequencies (Table 1), a mode
shape comparison has confirmed this correlation with a little more errors. After this experimental vali-

Fig. 7. Description of the grinder.
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dation, the numerical procedure is used to obtain the sensitive areas to the defect excitations applied to the
ball bearings of the grinder. For the ball bearing SNR 6203, the defect frequencies are: for ¼ 76:3 Hz,
fir ¼ 123:6 Hz, fball ¼ 99:8 Hz, fcage ¼ 9:5 Hz. Five nodes situated on the contour of the outer ring of the
bearing are selected for the excitation force application (Fig. 8). At each node, the responses of the grinder
are calculated for the excitation of four defect frequencies respectively.

The following comments can be given on the numerical results:

• Influence of the defect frequencies:
We note that these defect frequencies have a little influence on the calculated responses (Fig. 9a). The

obtained sensor positions are good for all four defect excitations, since all defect frequencies are much
smaller than the first natural frequency of the grinder, so they cannot excite other natural frequencies. This
explains why the defect frequencies have a significant influence for the elementary cell but not for the
grinder.
• Influence of excitation signal shapes:

The results show that the excitation signal shapes have a little influence on the calculation. Moreover, the
pulse widths (10, 30 and 50% of the time period) have no effects on the results. It seems important to use a
pulse signal instead of an harmonic one but the shape and width of the pulse is not essential for this kind of
study.
• MSSM:

It is difficult to judge the quality of the results obtained with the MSSM because of the complexity of the
structure, but the results are unusable (Fig. 9b). We note that the ideal measurement area is situated on the

Table 1

Natural frequencies of a flask obtained numerically and experimentally

Mode Experimental frequency (Hz) EF frequency (Hz) Relative error (%)

7 520 540 3.8

8 1010 1108 9.7

9 1263 1285 1.7

10 1601 1583 1.1

11 1660 1696 2.1

12 1745 1817 4.1

13 2000 1991 0.4

Fig. 8. Six nodes on the ball bearing for the excitation application.
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middle side of the grinder, just around fixation paths of the steel sheet. This part of the grinder is not easily
accessible because of the steel sheet and screw fixations.
• DRM:

This method put forward two measurement areas: the top of the cone and the left top area of the grinder
(Fig. 9c). The first one may be used when the bearing defect is situated at the node 1420 or 1422 (Fig. 8), the
another one can be used for other defect positions. The results show that for most defect positions on the
outer ring of the bearing the best sensor position is located on the left top of the grinder. The cone is not a
good place, since it is difficult to set a sensor on it.

5.2. Experimental evidence

We have made an experimental device and a chipping defect on the outer ring of a bearing. The grinder
works at normal speed. The objective is to compare the FRF at the optimum sensor zone (obtained nu-
merically) with those at other places.

The envelope detection method (Carreau, 1999) allows to experimentally check (Appendix C) that the
measured FRF in the numerical zone is more marked than the FRF at other places. Fig. 10 shows this
difference between a node in the optimum zone (ref. NZ) and a node outside this zone (ref. OZ). We note
that the maximal amplitude value at the node NZ is greater. This experimental validation confirms the
previous numerical results.

Fig. 9. Vibration amplitudes in normal directions obtained by different methods. (a) Influence of defect frequencies on spectral re-

sponses, (b) MSSM criteria, (c) ideal measurement area.
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This experiment shows that it is possible to use a numerical method in order to find an optimum
measurement area on a revolving machine. This area can be used to monitor all chipping defects (on the
inner ring, outer ring or balls of the bearings).

6. Conclusion

In this paper, a numerical methodology is proposed to determine optimum sensor positions for predictive
maintenance. An analytical bearing model is adopted to avoid complicated computations. An explicit
tangent stiffness matrix is obtained with the Newton–Raphson method. A bearing element is implemented
into the commercial code ABAQUS. The non linear FE modeling allows to determine the tangent stiffness
matrix at the given pre-load lever, then this matrix is used for the dynamic analysis. The defect excitations
are assumed to be periodic such as the defects on the inner or external rings. The analysis of the response
vectors in the frequency domain allows to find the most sensitive zones to the defect excitations.

An elementary unit shaft-ball bearing housing was modeled to study its spectral response to defect
excitations. The comparison between the experimental and numerical results shows a good correlation. An
industrial application was carried out and validated experimentally. This experiment shows that it is
possible to choose, with a finite element modeling, an optimum measurement area on a revolving machine.
This zone will be used to monitor chipping defects on a bearing of the grinder. This methodology gives
more information to help engineers to design revolving machines with the point of view of predictive
maintenance.

Appendix A. Formulas to determine the main defect frequencies of a rolling ball (or roller) bearing

With:

• Nb: the number of rolling element,
• D: the primitive diameter,
• D: the rolling element diameter,

Fig. 10. Validation of the ideal numerical zone on the grinder.

Outer ring frequency Inner ring frequency Cage frequency Ball frequency

for ¼ frot�Nb

2
1	 d

D cos a
� �

fir ¼ frot�Nb

2
1þ d

D cos a
� �

fcage ¼ frot
2

1	 d
D cos a

� �
fball ¼ frot

2
� D

d 1	 d cos a
D

� �2h i
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• a: the contact angle,
• frot: the frequency rotation of the inner ring (the outer one is supposed fix).

Appendix B. Fourier’s coefficients for pulse shape

With:

• A: the excitation force amplitude,
• DT : defect time width on a period,
• T: the defect excitation period.

Appendix C. Envelope detection or high frequency resonance technique

This method is used to detect precocious defect. With the high resonance frequencies of the frame (�10
kHz), the envelope detection permit to determine the defects generated by shocks in low frequency range
(<1 kHz).

The procedure is:

• Determination of the frame frequencies (0–10 kHz).
• Determination of the time signal.

• Fourier transform signalþ filtering around the chosen resonance in a range enclosing defect frequencies
and harmonics.

• Inverse Fourier transform of the filter spectrum. The result is then a time signal clearer, which allows to
show the shocks and signal periodicity.

Pulse shape F0 Fn
Rectangular A DT

T
2A
pk sinðpk DT

T Þ

Triangular A
2

DT
T

2A
p2k2DT

T
ð1	 cosðpk DT

T ÞÞ

Half sine 2A
p

DT
T

4A
pð1	4k2ðDTT Þ2Þ

DT
T cosðpk DT

T Þ
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• The high frequencies parts are suppressed and the envelope detection is realized with the Hilbert trans-
form followed by a straightening.

• Then, the Fourier transform is done on this signal and frequencies thus obtained are precisely those
which are wanted.

By doing the Fourier transform on the log of this spectrum and by squaring the result, we obtain a fre-
quency representation where we find only the wanted fundamental frequencies.
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